\(\int \csc (e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx\) [70]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 82 \[ \int \csc (e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}}\right )}{f}-\frac {\sqrt {a+b} \text {arctanh}\left (\frac {\sqrt {a+b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}}\right )}{f} \]

[Out]

arctanh(sec(f*x+e)*b^(1/2)/(a+b*sec(f*x+e)^2)^(1/2))*b^(1/2)/f-arctanh(sec(f*x+e)*(a+b)^(1/2)/(a+b*sec(f*x+e)^
2)^(1/2))*(a+b)^(1/2)/f

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 82, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {4219, 399, 223, 212, 385, 213} \[ \int \csc (e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}}\right )}{f}-\frac {\sqrt {a+b} \text {arctanh}\left (\frac {\sqrt {a+b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}}\right )}{f} \]

[In]

Int[Csc[e + f*x]*Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

(Sqrt[b]*ArcTanh[(Sqrt[b]*Sec[e + f*x])/Sqrt[a + b*Sec[e + f*x]^2]])/f - (Sqrt[a + b]*ArcTanh[(Sqrt[a + b]*Sec
[e + f*x])/Sqrt[a + b*Sec[e + f*x]^2]])/f

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 399

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Dist[b/d, Int[(a + b*x^n)^(p - 1), x]
, x] - Dist[(b*c - a*d)/d, Int[(a + b*x^n)^(p - 1)/(c + d*x^n), x], x] /; FreeQ[{a, b, c, d, p}, x] && NeQ[b*c
 - a*d, 0] && EqQ[n*(p - 1) + 1, 0] && IntegerQ[n]

Rule 4219

Int[((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With
[{ff = FreeFactors[Cos[e + f*x], x]}, Dist[1/(f*ff^m), Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*((a + b*(c*ff*x)^
n)^p/x^(m + 1)), x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[(m - 1)/2] && (Gt
Q[m, 0] || EqQ[n, 2] || EqQ[n, 4])

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {\sqrt {a+b x^2}}{-1+x^2} \, dx,x,\sec (e+f x)\right )}{f} \\ & = \frac {b \text {Subst}\left (\int \frac {1}{\sqrt {a+b x^2}} \, dx,x,\sec (e+f x)\right )}{f}+\frac {(a+b) \text {Subst}\left (\int \frac {1}{\left (-1+x^2\right ) \sqrt {a+b x^2}} \, dx,x,\sec (e+f x)\right )}{f} \\ & = \frac {b \text {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}}\right )}{f}+\frac {(a+b) \text {Subst}\left (\int \frac {1}{-1-(-a-b) x^2} \, dx,x,\frac {\sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}}\right )}{f} \\ & = \frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}}\right )}{f}-\frac {\sqrt {a+b} \text {arctanh}\left (\frac {\sqrt {a+b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}}\right )}{f} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.30 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.45 \[ \int \csc (e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\frac {\sqrt {2} \left (\sqrt {b} \text {arctanh}\left (\frac {\sqrt {a+b-a \sin ^2(e+f x)}}{\sqrt {b}}\right )-\sqrt {a+b} \text {arctanh}\left (\frac {\sqrt {a+b-a \sin ^2(e+f x)}}{\sqrt {a+b}}\right )\right ) \cos (e+f x) \sqrt {a+b \sec ^2(e+f x)}}{f \sqrt {a+2 b+a \cos (2 e+2 f x)}} \]

[In]

Integrate[Csc[e + f*x]*Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

(Sqrt[2]*(Sqrt[b]*ArcTanh[Sqrt[a + b - a*Sin[e + f*x]^2]/Sqrt[b]] - Sqrt[a + b]*ArcTanh[Sqrt[a + b - a*Sin[e +
 f*x]^2]/Sqrt[a + b]])*Cos[e + f*x]*Sqrt[a + b*Sec[e + f*x]^2])/(f*Sqrt[a + 2*b + a*Cos[2*e + 2*f*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(541\) vs. \(2(70)=140\).

Time = 0.56 (sec) , antiderivative size = 542, normalized size of antiderivative = 6.61

method result size
default \(\frac {\sqrt {a +b \sec \left (f x +e \right )^{2}}\, \left (2 \sqrt {b}\, \ln \left (-4 \sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sec \left (f x +e \right )-4 \sec \left (f x +e \right ) b \right ) \sqrt {a +b}-\ln \left (\frac {2 \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {a +b}\, \cos \left (f x +e \right )+2 \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {a +b}-2 \cos \left (f x +e \right ) a +2 b}{\sqrt {a +b}\, \left (1+\cos \left (f x +e \right )\right )}\right ) a -b \ln \left (\frac {2 \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {a +b}\, \cos \left (f x +e \right )+2 \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {a +b}-2 \cos \left (f x +e \right ) a +2 b}{\sqrt {a +b}\, \left (1+\cos \left (f x +e \right )\right )}\right )-\ln \left (-\frac {4 \left (\sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {a +b}\, \cos \left (f x +e \right )+\sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {a +b}+\cos \left (f x +e \right ) a +b \right )}{-1+\cos \left (f x +e \right )}\right ) a -\ln \left (-\frac {4 \left (\sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {a +b}\, \cos \left (f x +e \right )+\sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {a +b}+\cos \left (f x +e \right ) a +b \right )}{-1+\cos \left (f x +e \right )}\right ) b \right ) \cos \left (f x +e \right )}{2 f \sqrt {a +b}\, \left (1+\cos \left (f x +e \right )\right ) \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}}\) \(542\)

[In]

int(csc(f*x+e)*(a+b*sec(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/2/f/(a+b)^(1/2)*(a+b*sec(f*x+e)^2)^(1/2)*(2*b^(1/2)*ln(-4*b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2
)-4*b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*sec(f*x+e)-4*sec(f*x+e)*b)*(a+b)^(1/2)-ln(2/(a+b)^(1/2
)*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1
/2)*(a+b)^(1/2)-cos(f*x+e)*a+b)/(1+cos(f*x+e)))*a-b*ln(2/(a+b)^(1/2)*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1
/2)*(a+b)^(1/2)*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-cos(f*x+e)*a+b)/(1+cos(f*x+
e)))-ln(-4*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+
e))^2)^(1/2)*(a+b)^(1/2)+cos(f*x+e)*a+b)/(-1+cos(f*x+e)))*a-ln(-4*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)
*(a+b)^(1/2)*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+cos(f*x+e)*a+b)/(-1+cos(f*x+e)
))*b)*cos(f*x+e)/(1+cos(f*x+e))/((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.34 (sec) , antiderivative size = 496, normalized size of antiderivative = 6.05 \[ \int \csc (e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\left [\frac {\sqrt {a + b} \log \left (\frac {2 \, {\left (a \cos \left (f x + e\right )^{2} - 2 \, \sqrt {a + b} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + a + 2 \, b\right )}}{\cos \left (f x + e\right )^{2} - 1}\right ) + \sqrt {b} \log \left (\frac {a \cos \left (f x + e\right )^{2} + 2 \, \sqrt {b} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + 2 \, b}{\cos \left (f x + e\right )^{2}}\right )}{2 \, f}, \frac {2 \, \sqrt {-a - b} \arctan \left (\frac {\sqrt {-a - b} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{a + b}\right ) + \sqrt {b} \log \left (\frac {a \cos \left (f x + e\right )^{2} + 2 \, \sqrt {b} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + 2 \, b}{\cos \left (f x + e\right )^{2}}\right )}{2 \, f}, -\frac {2 \, \sqrt {-b} \arctan \left (\frac {\sqrt {-b} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{b}\right ) - \sqrt {a + b} \log \left (\frac {2 \, {\left (a \cos \left (f x + e\right )^{2} - 2 \, \sqrt {a + b} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + a + 2 \, b\right )}}{\cos \left (f x + e\right )^{2} - 1}\right )}{2 \, f}, \frac {\sqrt {-a - b} \arctan \left (\frac {\sqrt {-a - b} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{a + b}\right ) - \sqrt {-b} \arctan \left (\frac {\sqrt {-b} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{b}\right )}{f}\right ] \]

[In]

integrate(csc(f*x+e)*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/2*(sqrt(a + b)*log(2*(a*cos(f*x + e)^2 - 2*sqrt(a + b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x
+ e) + a + 2*b)/(cos(f*x + e)^2 - 1)) + sqrt(b)*log((a*cos(f*x + e)^2 + 2*sqrt(b)*sqrt((a*cos(f*x + e)^2 + b)/
cos(f*x + e)^2)*cos(f*x + e) + 2*b)/cos(f*x + e)^2))/f, 1/2*(2*sqrt(-a - b)*arctan(sqrt(-a - b)*sqrt((a*cos(f*
x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/(a + b)) + sqrt(b)*log((a*cos(f*x + e)^2 + 2*sqrt(b)*sqrt((a*cos(f*
x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + 2*b)/cos(f*x + e)^2))/f, -1/2*(2*sqrt(-b)*arctan(sqrt(-b)*sqrt((a
*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/b) - sqrt(a + b)*log(2*(a*cos(f*x + e)^2 - 2*sqrt(a + b)*sqr
t((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + a + 2*b)/(cos(f*x + e)^2 - 1)))/f, (sqrt(-a - b)*arcta
n(sqrt(-a - b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/(a + b)) - sqrt(-b)*arctan(sqrt(-b)*sq
rt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/b))/f]

Sympy [F]

\[ \int \csc (e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\int \sqrt {a + b \sec ^{2}{\left (e + f x \right )}} \csc {\left (e + f x \right )}\, dx \]

[In]

integrate(csc(f*x+e)*(a+b*sec(f*x+e)**2)**(1/2),x)

[Out]

Integral(sqrt(a + b*sec(e + f*x)**2)*csc(e + f*x), x)

Maxima [F]

\[ \int \csc (e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\int { \sqrt {b \sec \left (f x + e\right )^{2} + a} \csc \left (f x + e\right ) \,d x } \]

[In]

integrate(csc(f*x+e)*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sec(f*x + e)^2 + a)*csc(f*x + e), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 405 vs. \(2 (70) = 140\).

Time = 0.70 (sec) , antiderivative size = 405, normalized size of antiderivative = 4.94 \[ \int \csc (e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=-\frac {{\left (\frac {4 \, b \arctan \left (-\frac {\sqrt {a + b} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b} - \sqrt {a + b}}{2 \, \sqrt {-b}}\right )}{\sqrt {-b}} + \sqrt {a + b} \log \left ({\left | -\sqrt {a + b} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b} + \sqrt {a + b} \right |}\right ) - \sqrt {a + b} \log \left ({\left | -\sqrt {a + b} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b} - \sqrt {a + b} \right |}\right ) - \sqrt {a + b} \log \left ({\left | {\left (\sqrt {a + b} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b}\right )} {\left (a + b\right )} - \sqrt {a + b} {\left (a - b\right )} \right |}\right )\right )} \mathrm {sgn}\left (\cos \left (f x + e\right )\right )}{2 \, f} \]

[In]

integrate(csc(f*x+e)*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

-1/2*(4*b*arctan(-1/2*(sqrt(a + b)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x + 1/
2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + a + b) - sqrt(a + b))/sqrt(-b))/sqrt(-b) +
sqrt(a + b)*log(abs(-sqrt(a + b)*tan(1/2*f*x + 1/2*e)^2 + sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x + 1/2*
e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + a + b) + sqrt(a + b))) - sqrt(a + b)*log(abs(
-sqrt(a + b)*tan(1/2*f*x + 1/2*e)^2 + sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x + 1/2*e)^4 - 2*a*tan(1/2*f
*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + a + b) - sqrt(a + b))) - sqrt(a + b)*log(abs((sqrt(a + b)*tan(1/2
*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x + 1/2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b*
tan(1/2*f*x + 1/2*e)^2 + a + b))*(a + b) - sqrt(a + b)*(a - b))))*sgn(cos(f*x + e))/f

Mupad [F(-1)]

Timed out. \[ \int \csc (e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\int \frac {\sqrt {a+\frac {b}{{\cos \left (e+f\,x\right )}^2}}}{\sin \left (e+f\,x\right )} \,d x \]

[In]

int((a + b/cos(e + f*x)^2)^(1/2)/sin(e + f*x),x)

[Out]

int((a + b/cos(e + f*x)^2)^(1/2)/sin(e + f*x), x)